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New spectrum and technologies for 5G and IoT

I Heterogeneous frequency resources, including lower frequencies and
millimeter wave bands (e.g., 700 MHz, 28 GHz, 37 GHz, 39 GHz, 64-71
GHz, ...);

I Many small cells;

I Many antennas (massive MIMO);

I Full duplex;

I Massive/grant-free access for IoT;

I Non-orthogonal multiple access for IoT;

I Traffic and interference will vary significantly from cell to cell.
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Metropolitan-scale deployment
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Radio resource management (RRM)
At any time, which access points (APs) should serve a given user equipment
(UE)?
What frequencies and powers should each AP-UE link use?
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Timescales

1 millisecond

opportunistic
scheduling

1 second

ICIC
eICIC

1 minute

self-organizing
network (SON)

1 day

AP placement
& configuration

I Scheduling is likely to be distributed; cooperation is local;

I The aggregate traffic demand and large-scale fading vary slowly;

I Coarse resource allocation can be carried out over a metropolitan area.
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Cloud radio access network (C-RAN)

(NEC labs)
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Our vision: C-RAN + Metropolitan-area RRM

Metropolitan-area
radio resource
management
(Ma-RRM)

C-RAN scheduler
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Radio network model

AP 1 AP 2 AP 3

UE 1 UE 2

λ1 λ2
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Orthogonal spectrum reuse
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Full spectrum reuse
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Fully flexible spectrum allocation
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The basic formulation

maximize
r,w,y

u(r1, . . . , rk)

subject to rj =
∑

A⊂{1,...,n}

∑
i∈A

sAi→jw
A
i→j , j = 1, . . . , k

k∑
j=1

wA
i→j ≤ yA, A ⊂ {1, . . . , n}, i ∈ A

∑
A⊂{1,...,n}

yA = 1

wA
i→j ≥ 0, j = 1, . . . , k, A ⊂ {1, . . . , n}, i ∈ A.

I It is a convex optimization problem.
I It has an optimal solution that activates at most k patterns.
I It has kn2n−1 + 2n + k variables.
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A user-centric scalable model

N1 N21 2 3

UE 1 UE 2

λ1 λ2

I Each UE can be served only by a cluster of APs in its neighborhood;

I Out-of-cluster APs treated as stationary noise sources;

I Equivalent reformulation as iterative binary linear programming with
O(k) variables with guaranteed optimality gap;

I Solved using a highly efficient iterative pattern-pursuit algorithm.
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1000 APs and 2500 UEs: topology and association
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Local topology and allocation
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Baseline schemes

I Full-spectrum reuse with strongest AP association;

I Full-spectrum reuse with optimal AP-UE association;

I A theoretical lower bound.
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1000 APs and 2500 UEs: delays
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1000 APs and 2500 UEs: packet-level simulation
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Conclusion

I A vision for metropolitan-area multiple-timescale resource management;

I A user-centric scalable model;

I A highly efficient iterative pattern-pursuit algorithm;

I Guaranteed optimality gap;

I The framework is potentially applicable to some other metropolitan-scale
resource management problems.
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