Background	Spectrum management		

Metropolitan-Scale Radio Resource Management

Dongning Guo

in collaboration with Zhiyi Zhou, Binnan Zhuang, Ermin Wei, Michael L. Honig

Department of Electrical Engineering and Computer Science Northwestern University

LIDS Smart Urban Infrastructures Workshop May 11, 2017

Background				
00000	0000	00	00000	

- Heterogeneous frequency resources, including lower frequencies and millimeter wave bands (e.g., 700 MHz, 28 GHz, 37 GHz, 39 GHz, 64-71 GHz, ...);
- Many small cells;
- Many antennas (massive MIMO);
- ► Full duplex;
- Massive/grant-free access for IoT;
- Non-orthogonal multiple access for IoT;
- ▶ Traffic and interference will vary significantly from cell to cell.

Background		
00000		

- Heterogeneous frequency resources, including lower frequencies and millimeter wave bands (e.g., 700 MHz, 28 GHz, 37 GHz, 39 GHz, 64-71 GHz, ...);
- Many small cells;
- Many antennas (massive MIMO);
- ► Full duplex;
- Massive/grant-free access for IoT;
- Non-orthogonal multiple access for IoT;
- ▶ Traffic and interference will vary significantly from cell to cell.

Background				
00000	0000	00	00000	

- Heterogeneous frequency resources, including lower frequencies and millimeter wave bands (e.g., 700 MHz, 28 GHz, 37 GHz, 39 GHz, 64-71 GHz, ...);
- Many small cells;
- Many antennas (massive MIMO);
- Full duplex;
- Massive/grant-free access for IoT;
- Non-orthogonal multiple access for IoT;
- ▶ Traffic and interference will vary significantly from cell to cell.

Background				
00000	0000	00	00000	

- Heterogeneous frequency resources, including lower frequencies and millimeter wave bands (e.g., 700 MHz, 28 GHz, 37 GHz, 39 GHz, 64-71 GHz, ...);
- Many small cells;
- Many antennas (massive MIMO);
- Full duplex;
- Massive/grant-free access for IoT;
- Non-orthogonal multiple access for IoT;
- ▶ Traffic and interference will vary significantly from cell to cell.

Background				
00000	0000	00	00000	

- Heterogeneous frequency resources, including lower frequencies and millimeter wave bands (e.g., 700 MHz, 28 GHz, 37 GHz, 39 GHz, 64-71 GHz, ...);
- Many small cells;
- Many antennas (massive MIMO);
- Full duplex;
- Massive/grant-free access for IoT;
- Non-orthogonal multiple access for IoT;
- ▶ Traffic and interference will vary significantly from cell to cell.

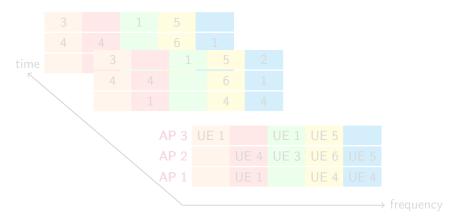
Background				
00000	0000	00	00000	

- Heterogeneous frequency resources, including lower frequencies and millimeter wave bands (e.g., 700 MHz, 28 GHz, 37 GHz, 39 GHz, 64-71 GHz, ...);
- Many small cells;
- Many antennas (massive MIMO);
- Full duplex;
- Massive/grant-free access for IoT;
- Non-orthogonal multiple access for IoT;
- ▶ Traffic and interference will vary significantly from cell to cell.

Background				
00000	0000	00	00000	

- Heterogeneous frequency resources, including lower frequencies and millimeter wave bands (e.g., 700 MHz, 28 GHz, 37 GHz, 39 GHz, 64-71 GHz, ...);
- Many small cells;
- Many antennas (massive MIMO);
- Full duplex;
- Massive/grant-free access for IoT;
- Non-orthogonal multiple access for IoT;
- ► Traffic and interference will vary significantly from cell to cell.

Background	Spectrum management		
00000			

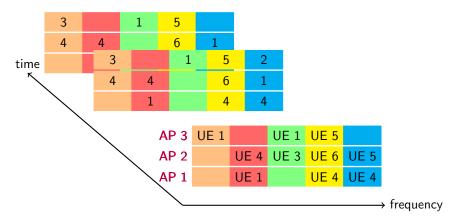

Metropolitan-scale deployment

Background	Spectrum management		
00000			

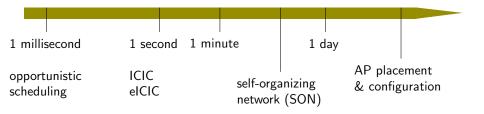
Radio resource management (RRM)

At any time, which access points (APs) should serve a given user equipment (UE)?

What frequencies and powers should each AP-UE link use?

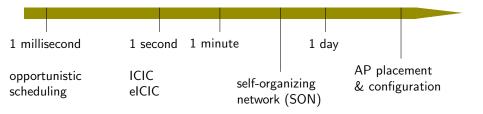


Background	Spectrum management		
00000			


Radio resource management (RRM)

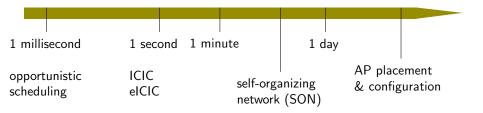
At any time, which access points (APs) should serve a given user equipment (UE)?

What frequencies and powers should each AP-UE link use?


Background		
000000		

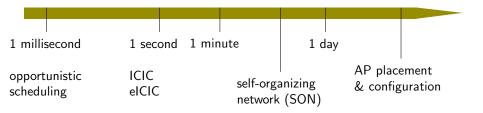
Scheduling is likely to be distributed; cooperation is local;

- The aggregate traffic demand and large-scale fading vary slowly;
- Coarse resource allocation can be carried out over a metropolitan area.


Background		
000000		

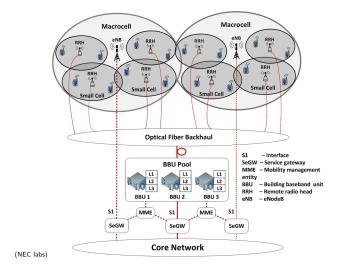
Scheduling is likely to be distributed; cooperation is local;

- The aggregate traffic demand and large-scale fading vary slowly;
- Coarse resource allocation can be carried out over a metropolitan area.


Background		
000000		

Scheduling is likely to be distributed; cooperation is local;

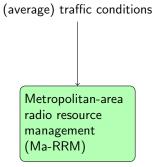
- The aggregate traffic demand and large-scale fading vary slowly;
- Coarse resource allocation can be carried out over a metropolitan area.


Background		
000000		

- Scheduling is likely to be distributed; cooperation is local;
- The aggregate traffic demand and large-scale fading vary slowly;
- Coarse resource allocation can be carried out over a metropolitan area.

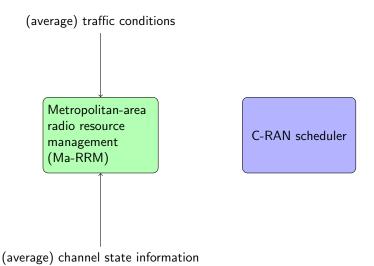
Background		
000000		

Cloud radio access network (C-RAN)

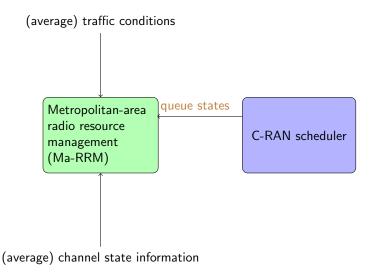


Background	Spectrum management		
000000			

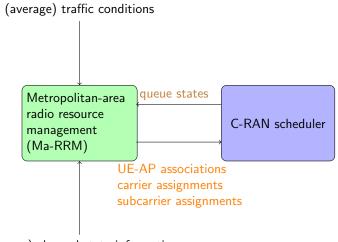
Metropolitan-area radio resource management (Ma-RRM)

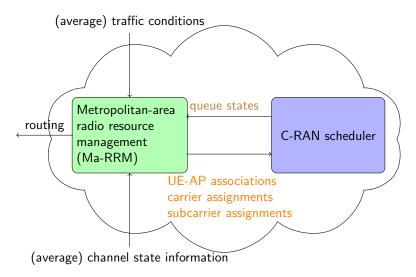

C-RAN scheduler

Background	Spectrum management		
000000			

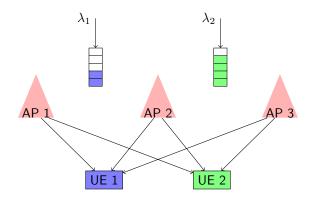


C-RAN scheduler

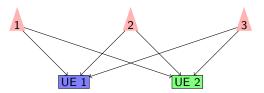




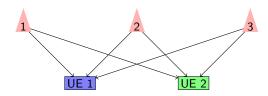
Background	Spectrum management		
000000			

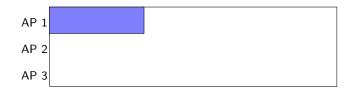

(average) channel state information

Background	Spectrum management		
00000			

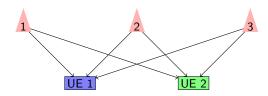


Background	Spectrum management		
	0000		

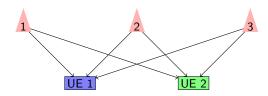

Radio network model



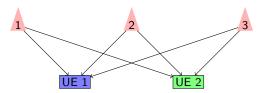
Background	Spectrum management		
	0000		

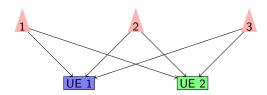


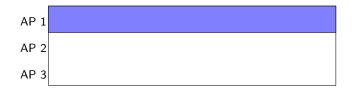
Background	Spectrum management		
	0000		



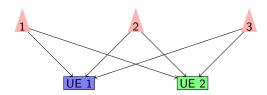
Background	Spectrum management		
	0000		

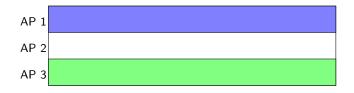

Background	Spectrum management		
	0000		

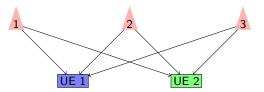

Background	Spectrum management		
	0000		


Full spectrum reuse

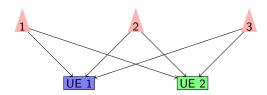
Background	Spectrum management		
	0000		

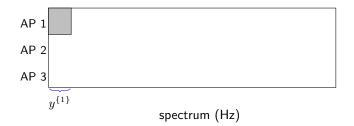

Full spectrum reuse



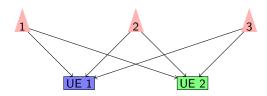

Background	Spectrum management		
	0000		

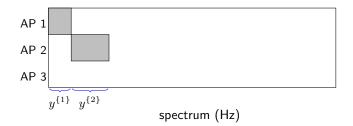
Full spectrum reuse

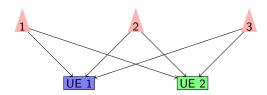


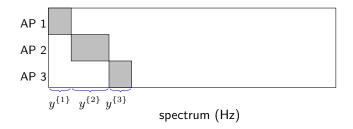


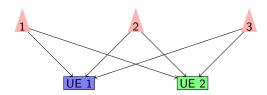
Background	Spectrum management		
	0000		

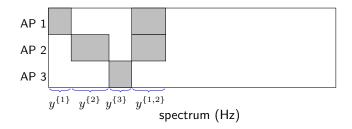


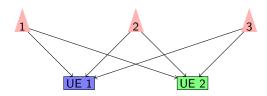

Background	Spectrum management		
	0000		

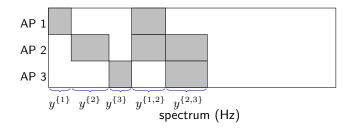


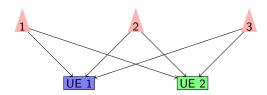

Background	Spectrum management		
	0000		

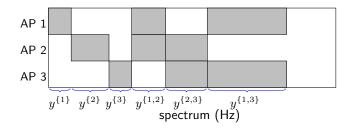


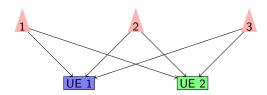

Background	Spectrum management		
	0000		

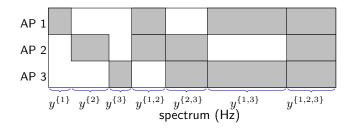


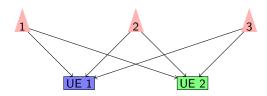

Background	Spectrum management		
	0000		

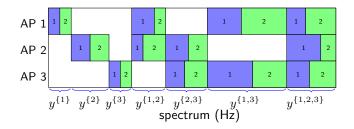


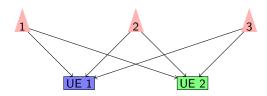

Background	Spectrum management		
	0000		

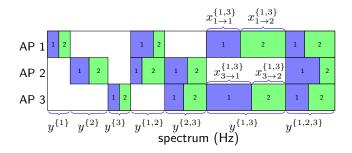



Background	Spectrum management		
	0000		




Background	Spectrum management		
	0000		




Background	Spectrum management		
	0000		

Background	Spectrum management		
	0000		

Background	Spectrum management	Optimized allocation	
		•0	

The basic formulation

$$\begin{array}{ll} \underset{\boldsymbol{r},\boldsymbol{w},\boldsymbol{y}}{\operatorname{maximize}} & u(r_1,\ldots,r_k) \\ \text{subject to} & r_j = \sum_{A \subset \{1,\ldots,n\}} \sum_{i \in A} s^A_{i \to j} w^A_{i \to j}, \quad j = 1,\ldots,k \\ & \sum_{j=1}^k w^A_{i \to j} \leq y^A, \quad A \subset \{1,\ldots,n\}, i \in A \\ & \sum_{A \subset \{1,\ldots,n\}} y^A = 1 \\ & w^A_{i \to j} \geq 0, \quad j = 1,\ldots,k, A \subset \{1,\ldots,n\}, i \in A. \end{array}$$

It is a convex optimization problem.

▶ It has an optimal solution that activates at most k patterns.

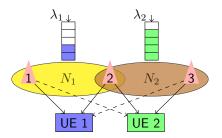
• It has $kn2^{n-1} + 2^n + k$ variables.

Background	Spectrum management	Optimized allocation	
		•0	

The basic formulation

$$\begin{array}{ll} \underset{\boldsymbol{r},\boldsymbol{w},\boldsymbol{y}}{\operatorname{maximize}} & u(r_1,\ldots,r_k) \\ \text{subject to} & r_j = \sum_{A \subset \{1,\ldots,n\}} \sum_{i \in A} s^A_{i \to j} w^A_{i \to j}, \quad j = 1,\ldots,k \\ & \sum_{j=1}^k w^A_{i \to j} \leq y^A, \quad A \subset \{1,\ldots,n\}, i \in A \\ & \sum_{A \subset \{1,\ldots,n\}} y^A = 1 \\ & w^A_{i \to j} \geq 0, \quad j = 1,\ldots,k, A \subset \{1,\ldots,n\}, i \in A. \end{array}$$

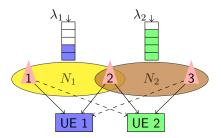
- It is a convex optimization problem.
- ▶ It has an optimal solution that activates at most k patterns.
- It has $kn2^{n-1} + 2^n + k$ variables.


Background	Spectrum management	Optimized allocation	
		•0	

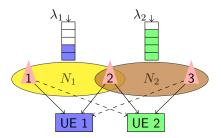
The basic formulation

$$\begin{array}{ll} \underset{\boldsymbol{r},\boldsymbol{w},\boldsymbol{y}}{\operatorname{maximize}} & u(r_1,\ldots,r_k) \\ \text{subject to} & r_j = \sum_{A \subset \{1,\ldots,n\}} \sum_{i \in A} s^A_{i \to j} w^A_{i \to j}, \quad j = 1,\ldots,k \\ & \sum_{j=1}^k w^A_{i \to j} \leq y^A, \quad A \subset \{1,\ldots,n\}, i \in A \\ & \sum_{A \subset \{1,\ldots,n\}} y^A = 1 \\ & w^A_{i \to j} \geq 0, \quad j = 1,\ldots,k, A \subset \{1,\ldots,n\}, i \in A. \end{array}$$

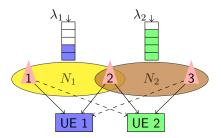
- It is a convex optimization problem.
- ▶ It has an optimal solution that activates at most k patterns.
- It has $kn2^{n-1} + 2^n + k$ variables.


Background	Spectrum management	Optimized allocation	
		00	

• Each UE can be served only by a cluster of APs in its neighborhood;

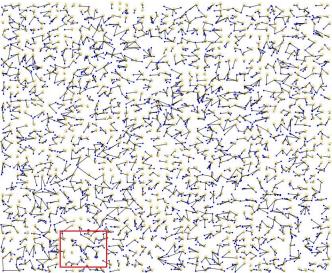

- Out-of-cluster APs treated as stationary noise sources;
- Equivalent reformulation as iterative binary linear programming with O(k) variables with guaranteed optimality gap;
- Solved using a highly efficient iterative pattern-pursuit algorithm.

Background	Spectrum management	Optimized allocation	
		00	

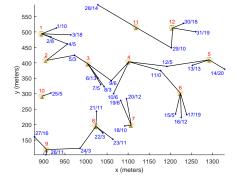

- Each UE can be served only by a cluster of APs in its neighborhood;
- Out-of-cluster APs treated as stationary noise sources;
- Equivalent reformulation as iterative binary linear programming with O(k) variables with guaranteed optimality gap;
- Solved using a highly efficient iterative pattern-pursuit algorithm.

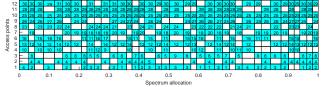
Background	Spectrum management	Optimized allocation	
		00	

- Each UE can be served only by a cluster of APs in its neighborhood;
- Out-of-cluster APs treated as stationary noise sources;
- ► Equivalent reformulation as iterative binary linear programming with *O*(*k*) variables with guaranteed optimality gap;
- Solved using a highly efficient iterative pattern-pursuit algorithm.


Background	Spectrum management	Optimized allocation	
		00	

- Each UE can be served only by a cluster of APs in its neighborhood;
- Out-of-cluster APs treated as stationary noise sources;
- ► Equivalent reformulation as iterative binary linear programming with *O*(*k*) variables with guaranteed optimality gap;
- ► Solved using a highly efficient iterative pattern-pursuit algorithm.


	Performance	
	00000	


1000 APs and 2500 UEs: topology and association

Background	Spectrum management	Performance	
		0000	

Local topology and allocation

Dongning Guo Metropolitan-Scale Radio Resource Management

Background	Spectrum management	Performance	
		00000	

Baseline schemes

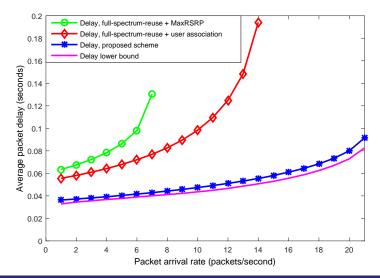
Full-spectrum reuse with strongest AP association;

- Full-spectrum reuse with optimal AP-UE association;
- A theoretical lower bound.

Background	Spectrum management	Performance	
		00000	

Baseline schemes

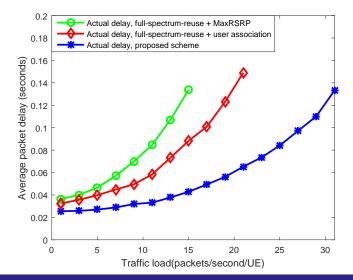
- Full-spectrum reuse with strongest AP association;
- Full-spectrum reuse with optimal AP-UE association;
- A theoretical lower bound.


Background	Spectrum management	Performance	
		00000	

Baseline schemes

- Full-spectrum reuse with strongest AP association;
- Full-spectrum reuse with optimal AP-UE association;
- A theoretical lower bound.

Background	Spectrum management	Performance	
		00000	


1000 APs and 2500 UEs: delays

Dongning Guo Metropolitan-Scale Radio Resource Management

Background	Spectrum management	Performance	
		00000	

1000 APs and 2500 UEs: packet-level simulation

Background	Spectrum management		conclusion
			•

- A vision for metropolitan-area multiple-timescale resource management;
- A user-centric scalable model;
- A highly efficient iterative pattern-pursuit algorithm;
- Guaranteed optimality gap;
- The framework is potentially applicable to some other metropolitan-scale resource management problems.

Background	Spectrum management		conclusion
			•

- A vision for metropolitan-area multiple-timescale resource management;
- A user-centric scalable model;
- A highly efficient iterative pattern-pursuit algorithm;
- Guaranteed optimality gap;
- The framework is potentially applicable to some other metropolitan-scale resource management problems.

Background	Spectrum management		conclusion
			•

- A vision for metropolitan-area multiple-timescale resource management;
- A user-centric scalable model;
- A highly efficient iterative pattern-pursuit algorithm;
- Guaranteed optimality gap;
- The framework is potentially applicable to some other metropolitan-scale resource management problems.

Background	Spectrum management		conclusion
			•

- A vision for metropolitan-area multiple-timescale resource management;
- A user-centric scalable model;
- A highly efficient iterative pattern-pursuit algorithm;
- Guaranteed optimality gap;
- The framework is potentially applicable to some other metropolitan-scale resource management problems.

Background	Spectrum management		conclusion
			•

- A vision for metropolitan-area multiple-timescale resource management;
- A user-centric scalable model;
- A highly efficient iterative pattern-pursuit algorithm;
- Guaranteed optimality gap;
- The framework is potentially applicable to some other metropolitan-scale resource management problems.