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large transportation systems 



Ill-posed inverse problems in London 
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Agenda 

•  Transport for London (TfL) 

•  Sampling in extremely constrained spaces 

•  Concluding remarks 



Main objective 

•  To provide an estimate of passenger behaviour 
when an unplanned closures take place in a origin-
destination (OD) transportation system 
–  Passenger behaviour: number of exits in a region of 

interest (e.g., “tap-outs” in the Tube) 

–  Unplanned closures: interruptions of service in lines and 
stations due to incidents (e.g., as reported by the TfL 
twitter account) 

–  OD system: origin and destination of passenger is 
observed (via Oyster cards) 

 



Approach 

1.  Build a model for origin-destination counts for all 
3742 pairs and every minute of the day in the 
natural regime (i.e., no unplanned closures) 

2.  Use these models to generate counterfactual 
behaviour during disruption times 
–  Expected OD counts had no disruption taken place 

3.  Use the counterfactual behaviour as explanatory 
features of observed behaviour under disruption 
using a battery of linear models 



Findings 

•  A hierarchical model for origin-destination-time can 
be built with computationally and statistically simple 
building blocks which is robust for prediction 
–  No hidden states, combination of 100,000+ nonparametric 

building blocks fit to 300,000,000+ smart card tap events 

•  Behaviour under the natural regime, plus features 
derived from flow measures (i.e., solutions to IPIP) 
explain much of the behaviour under disruption 



Overview of data and models 

Smart Card Data 

Network Structure Data 

Disruption Logs 

Passenger Route Surveys + 
Network Tomography Models 

“Natural Tube” Model 

“Disrupted Tube” Model 



The Tube map 

http://www.tfl.gov.uk/assets/downloads/standard-tube-map.pdf 



Structural data 

•  There are lines and stations 
–  Underground lines, Overground lines, and DLR 

•  Stations can belong to multiple lines 
–  When there is a change of system  (e.g., Stratford Under-

ground vs Stratford DLR vs Stratford Overground) 
–  Physically disjoint stations may have the same name 

(e.g., Edgeware Road, Hammersmith) 

•  Code as a directed network, with stations as nodes, 
different nodes for stations with multiple Oyster IDs 

•  Stations are given physical locations too 
 



Smart Card data 

•  Individual, anonymized, Oyster card IDs 
•  History of taps: 

–  Event (IN/OUT, among others) 
–  Location, date, time of the day (1-min resolution) 

•  Some measurement errors 
–  Staff cards included, but not labeled 
–  It is possible to leave some stations without tapping out 

•  Change of stations within connections are not 
usually recorded 



Disruption logs 
•  Official problem reports in the Tube, mostly free text 

E.g. “No service Finchley Road to Waterloo due to a faulty 
train at Baker Street. MINOR DELAYS on the rest of the line.” 

•  Line ID provided, plus starting/ending time (seconds) 

•  Directionality: 
“No service West Hampstead to Stanmore northbound only 
due to a fire alert at Willesden Green. MINOR DELAYS on the 
rest of the line.” 



Disruption data 

•  793 data points, over 70 week days to avoid 
complication due to seasonality 

•  Each data point corresponds to the outcome at a 
particular station / particular disruption 

•  If one disruption involves several stations of interest, 
it provides us with several data points 

•  We extract indicator variable for minor and major 
delays from disruption logs 

 



Rolling origin-destination survey 
•  TfL surveys with passengers regularly, who indicate 

frequency of routes chosen 
–  Recall Oyster cards record origin-destination only 

•  2012-2013 records, around 100,000 counts 

•  Often surveys do not indicate full route, just points of 
change (implies 2 types of prior information) 



Basic modeling idea 
•  Let Si be a station of interest within disrupted line: 

EXPECTED EXITS UNDER DISRUPTION(i) = 
   EXPECTED NATURAL NUMBER OF EXITS(i) 
– MISSING INFLOW(i) 
+ MISSING OUTFLOW(i) 

Si Disrupted 
Line 



Example prediction under disruption 
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Agenda 

•  Transport for London (TfL) 

•  Sampling in extremely constrained spaces 

•  Concluding remarks 



Mathematical formulation 

Given a collection of tap-ins and tap-outs Y(m×t) and a 
probabilistic routing matrix A(m×n), infer latent OD 
counts, X(n×t), such that Y=A⋅X, where n > m. 
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Consider Y(m×1) = A(m×n) X(n×1) 

Given Y,A we want to find X 

•  Rewrite A = [A1|A2] with r(A1) = m, and x = [x1|x2] 

•  The posterior is  p(x | y,λ) ∝ p(x2 | y,λ)⋅ If(y,A,x  )(x1) 

•  Part of the estimand is  x1 = A1
-1( y – A2 x2 ) 

Solutions x2 lie in the intersection of a linear space of 
dim. n-m with the positive orthant: a convex polytope 

Geometry of ill-posed inverse problems 

18 

2 



New idea: Polytope samplers 

Strategy 
1.  Leverage HNF to find first vertex 
2.  Greedily move along the edges to find all 

vertices (via HNF pivoting) 
3.  Place a distribution on the polytope; we develop 

three strategies to do this using Dirichlet pdf 

Polytope samplers provide a new exact sampling 
strategy for inference in ill-posed inverse problems 
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Hermite normal form 

•  Hermite Normal Form of integer matrix A:  B=AQ 

•  Columns of Q2 generates null-space  
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Finding the first vertex (almost) 

Start from y = Ax, with A of size mxn 
Define x’ = Q-1x 

Then rewrite y = AQQ-1x = AQx’ 

Notice that AQ = [Im | 0 ]   

So x’ = [y | 0] is a solution! 
 
Caveats apply, but it turns out this is a good start 
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Distributions on a convex polytope 

1.  Lift the polytope into a higher dimensional 
simplex, posit a Dirichlet, project back 

2.  Triangulate the convex polytope into simplices, 
posit a collection of Dirichlet distributions 
weighted by their volumes 

3.  Direct generalization of Dirichlet that leverages 
moment map and projective geometry 

22 



Illustrative example 

Matrix A is 9x12 and leads to a 3D solution space 
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Take home points 

•  Massive data on individual passengers available 

•  Lots of opportunities for impact 
–  Assessing/predicting overcrowding, monitoring/routing 
–  Planning minimally-disrupting closures for safety 
–  Validating standard assumptions (congestion models, …) 

•  Ill-posed inverse problem 
–  Samplers based on geometry of polytopes, and much  

more (e.g., Fienberg-Fréchet sharp bounds on OD flows) 
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Thanks 


