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Public transportation systems are an essential component of major
cities. The widespread use of smart cards for automated fare
collection in these systems offers a unique opportunity to under-
stand passenger behavior at a massive scale. In this study, we use
network-wide data obtained from smart cards in the London
transport system to predict future traffic volumes, and to estimate
the effects of disruptions due to unplanned closures of stations or
lines. Disruptions, or shocks, force passengers to make different
decisions concerning which stations to enter or exit. We describe
how these changes in passenger behavior lead to possible over-
crowding and model how stations will be affected by given
disruptions. This information can then be used to mitigate the
effects of these shocks because transport authorities may prepare
in advance ions such as additi buses near the
most affected stations. We describe statistical methods that lever-
age the large amount of smart-card data collected under the natural
state of the system, where no shocks take place, as variables that
are indicative of behavior under disruptions. We find that features
extracted from the natural regime data can be successfully exploited
to describe different disruption regimes, and that our framework
can be used as a general tool for any similar complex transporta-

tion system.
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ell-designed transportation systems are a key element in

the economic welfare of major cities. Design and planning

of these systems requires a quantitative understanding of traffic

patterns and relies on the ability to predict the effects of dis-
ruptions to such patterns, both planned and unplaxmed (1)

There is a long history of analytic and

Transport for London Data

The London transportation system is composed of several con-
nected subsystems. We focus on the Underground, Overground,
and Docklands Light Rail (DLR), all of which are train services
aimed at fast commuting within the Greater London area only. A
map of the system is provided in Fig. S1.

Transport for London (TfL) provided us with smart-card
readings covering 70 d, from February 2011 to February 2012.
Smart-card readings comprise more than 80% of the total number
of journeys (18). Each reading consists of a time stamp, a location
code, and an event code. The location code uniquely identifies
each of the 374 stations of the system that were active during the
months covered by our data. The two events of our interest are

when a touches the rt-card reader at the
entrance (“tap-in” event) or at the exit (“tap-out” event) of a sta-
tion. Passenger IDs are anonymized and ignored in our analysis. We
discarded all tap-in readings that are not matched to a tap-out, and
vice-versa. Time resolution of the recorded time stamps is 1 min.
Each day is composed of 1,200 min, starting at 5:00 AM until 1:00
AM of the next calendar day. Our analysis covers weekdays
only. Weekdays are assumed to be exchangeable (see Fig. S2).

Overview of Analysis

‘We show that we can reliably predict passenger origin-destina-
tion (OD) traffic by combining around 140,000 nonparametric
statistical models with hundreds of millions of smart-card data
events. We also show that the same model provides features that
explain behavior under a shock (or “disruption”) to the system,
defined as an unanticipated period during which a station or a
line is (partially) closed down. The resulting model allows us to
predict the outcome of disruptions and to evaluate stations by how

the study of traffic patterns (2), for example usmg simulated
scenarios in simple transportation systems (3), and analysis of
real traffic data in complex systems, either focusing on a small
samples (4) or using more aggregate data (5, 6). Here we take
this approach to the next level by making use of smart-card data
and incident logs to (i) predict traffic patterns and (ii) estimate
the effect of unplanned disruptions on these patterns. We ana-
lyzed 70 d of smart-card transactions from the London trans-
portation network, composed of ~10 million unique IDs and
6 million transactions per day on average, resulting in one of the
largest statistical analyses of transportation systems to date.

A related literature deals with various aspects of dynamics in
complex networks and complex systems in general (7-9), using a
variety of data sources, from emails (10) to the circulation of bank
notes (11) to online experiments on Amazon Turk (12). More
recently, a number of analyses have leveraged mobile phone data
as proxies for mobility (4, 13-15).

Wawauar cmart_nard tachnalnou allawe e ta nhtain larea

prone to ing they are given disruptions at peak time.
Significance
We propose a new ch to ing massive P i
systems that traffic i ion about indivi trav-

elers. The goals of the analysis are to quantify the effects of
shocks in the system, such as line and station closures, and to
predict traffic volumes. We conduct an in-depth statistical analysis
of the Transport for London railway traffic system. The proposed
methodology is unique in the way that past disruptions are used
to predut unseen scenarios, by relying on simple physical

of flow and a syst ide model for
origin-destination movement. The method is scalable, more
accurate than pp! , and i to other
complex systems. It fore offers imp

insights to inform policies on urban transportation.
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Estimating Latent Processes on a Network From

Edoardo M. AiRoLDI and Alexander W. BLOCKER

Indirect Measurements

In 2 communication etwork, point-to-point traffic volumes over time are critical for designing protocols that roate information efficiently
and for maintaining security, whether at the scale of an Intemet service provider or within a corporation. While technically feasible, the
direct measurement of point-to-point traffic imposes 2 heavy burden on petwork performance and is typically not implemented. Instead,
indirect aggregate traffic volumes are routinely collected. We consider the problem of estimating point-to-point traffic volumes, x,, from
apgrepate traffic volumes, y,. piven information about the petwork routing protocol encoded in a matrix A. This estimation task can be
reformalated as finding the solutions to a sequence of ill-posed linear inverse problems. v, = A x,. since the number of origin-destination
routes of interest is higher than the number of aggregate measurements available.

Here, we introduce 2 novel multilevel state-spece model (S3M) of apgrepate traffic volumes with realistic festures. We implement a
naive strategy for estimating unobserved point-to-point traffic volumes from indirect measurements of aggregate raffic, based on particle
filtering. We men &velop 2 more efficient two-stage inference strategy that refies on model-based regularization: a simple model is used to

calibrate that lead to

infarence in the multilevel SSM. We apply our methods to corporate and

academic petworks, where we show that the proposed inference strategy outperforms existing approaches and scales to larger networks. We

also design a simulation study to explore the factors that influence the performance. Our results suggest that model-based regularization

may be an efficient strategy for inference in other complex multilevel models. Supplementary materials for this article are available online.

KEY WORDS:  Approximate inference; lll-posed inverse problem:; Multilevel state-space model: Multistage estimation: Network tomog-
raphy: Origin-destination traffic matrix; Particle filtering; Polytope sampling; Stochastic dynamics.

1. INTRODUCTION

A pervasive challenge in multivariate time series analy-
sis is the estimation of nonobservable time series of interest
lx, t =1,..., T from indirect noisy measurements [y, : t =

. TL lyplcs]]y obtained through an aggregation or mix-
ing process, ¥, = a(x;) ¥r. The inference problem that arises
in this setting is often referred to as an inverse, or deconvo-
lution, problem (e.g., Hansen 1998; Casella and Berger 2001;
Meister 2009) in the statistics and computer science literatures,
and qualified as ill-posed because of the lower dimensionality
of the measurement vectors with respect to the nonobservable
estimands of interest. I1l-posed inverse problems lie at the heart

process encodes the routing protocol—whether deterministic of
probabilistic—that determines the path traffic from any given
source follows to reach its destination. This type of mixing can
be specified as a linear aggrepation process A. This problem set-
ting leads to the following sequence of ill-posed linear inverse
(or deconvolution) problems,

¥=Ax, sLy,x,=0 fort=1,....T, (1)

since the observed aggregate traffic time series are low dimen-
sional, y, € B™, while the latent point-to-point traffic time se-
ries of interest are high dimensional, x, € R". Thus, the matrix
Amuxn is rank deficient, r(A) = m < n, in this general problem

setting.
of a number of modern npphcauons, including image super- Thnf ication to ct ication ks that
combine ma:ﬂdyp;séum o ina ':'Lﬁe_.“e want u: our research is (volume) network tomography; an application
images iginally i duced by Vardi (1996), which h: ickly be-
image N with two-di e ints (Shepp and originally ¥ i ( ). ich has quickly

Kruskal 1978; Vardi, Shepp, and Kaufman 1985); blind source
separation where there are more sound sources than sound tracks
(i.e., the measurements) available (Liu and Chen 1995; Lee
et al. 1999; Parra and Sajda 2003); and inference on cell val-
ues in contingency tables where two-way or multiway margins
are prespecified (Bishop, Fienberg, and Holland 1975; Dobra,
Tebaldi, and West 2006).

‘We consider a setting in which high-dimensional multivariate
time series x1.7 mix on a network. Individual time series corre-
spond to traffic directed from a node to another. The aggregation

come a classic (see, e.g.. Vanderbei and Iannone 1994; Tebaldi
and West 1998; Cao et al. 2000; Coates et al. 2002; Medina
et al. 2002; Liang and Yu 2003a; Zhang et al. 2003b; Airoldi
and Faloutsos 2004; Castro et al. 2004; Lakhina et al. 2004;
Lawrence et al. 2006b; Fang, Vardi, and Zhang 2007; Blocker
and Airoldi 2011). An established engineering practice is at the
root of the inference problem in network tomography. Briefly,
the availability of point-to-point (or origin-destination (OD))
traffic volumes over time is critical for reliability analysis
(e.g., predicting flows and failures), traffic engmwnng (e.g..
minimizing ), capacity pl (e.g., re-
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Main objective

* To provide an estimate of passenger behaviour
when an unplanned closures take place in a origin-
destination (OD) transportation system

— Passenger behaviour: number of exits in a region of
interest (e.g., “tap-outs” in the Tube)

— Unplanned closures: interruptions of service in lines and
stations due to incidents (e.g., as reported by the T{L
twitter account)

— OD system: origin and destination of passenger is
observed (via Oyster cards)



Approach

1.

Build a model for origin-destination counts for all
3747 pairs and every minute of the day in the
natural regime (1.c., no unplanned closures)

Use these models to generate counterfactual
behaviour during disruption times
— Expected OD counts had no disruption taken place

Use the counterfactual behaviour as explanatory
features of observed behaviour under disruption
using a battery of linear models



Findings

A hierarchical model for origin-destination-time can
be built with computationally and statistically simple
building blocks which 1s robust for prediction

— No hidden states, combination of 100,000+ nonparametric
building blocks fit to 300,000,000+ smart card tap events

« Behaviour under the natural regime, plus features
derived from flow measures (1.¢., solutions to IPIP)
explain much of the behaviour under disruption



Overview of data and models

Passenger Route Surveys +
Network Tomography Models

Smart Card Data

Network Structure Data
“Natural Tube” Model

Disruption Logs
“Disrupted Tube” Model



The Tube map

2 3 —- 5 6 7 8

http://www.tfl.gov.uk/assets/downloads/standard-tube-map.pdf



Structural data

There are lines and stations
— Underground lines, Overground lines, and DLR

Stations can belong to multiple lines

— When there 1s a change of system (e.g., Stratford Under-
ground vs Stratford DLR vs Stratford Overground)

— Physically disjoint stations may have the same name
(e.g., Edgeware Road, Hammersmith)

Code as a directed network, with stations as nodes,
different nodes for stations with multiple Oyster 1Ds

Stations are given physical locations too



Smart Card data

Individual, anonymized, Oyster card IDs

History of taps:
— Event (IN/OUT, among others)

— Location, date, time of the day (1-min resolution)

Some measurement errors
— Staff cards included, but not labeled
— It 1s possible to leave some stations without tapping out

Change of stations within connections are not
usually recorded



Disruption logs

 Official problem reports in the Tube, mostly free text

E.g. “No service Finchley Road to Waterloo due to a faulty
train at Baker Street. MINOR DELAYS on the rest of the line.”

* Line ID provided, plus starting/ending time (seconds)

e Directionality:

“No service West Hampstead to Stanmore northbound only
due to a fire alert at Willesden Green. MINOR DELAYS on the
rest of the line.”



Disruption data

« 793 data points, over 70 week days to avoid
complication due to seasonality

« Each data point corresponds to the outcome at a
particular station / particular disruption

 If one disruption involves several stations of interest,
it provides us with several data points

* We extract indicator variable for minor and major
delays from disruption logs



Rolling origin-destination survey

« T{L surveys with passengers regularly, who indicate
frequency of routes chosen

— Recall Oyster cards record origin-destination only

2012-2013 records, around 100,000 counts

« Often surveys do not indicate full route, just points of
change (1mplies 2 types of prior information)



Basic modeling 1dea

« Let S, be a station of interest within disrupted line:

EXPECTED EXITS UNDER DISRUPTION(i) =

EXPECTED NATURAL NUMBER OF EXITS(i)
— MISSING INFLOW(i)
+ MISSING OUTFLOW(i)

Disrupted

Line \
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« Sampling in extremely constrained spaces
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Mathematical formulation

Given a collection of tap-ins and tap-outs ¥, ., and a

probabilistic routing matrix A

(mxn)>

y(1,t) y(1,1) 110

% %
A Q B (2. 1) 00 1 1

y(3.1) 1 01 0

infer latent OD
counts, X, ., such that Y=4 - X, where n > m.

| AA

AB
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Geometry of 1ll-posed inverse problems

Consider Y .1y = Ay Xax1)

(mxn)

Given Y.A we want to find X
« Rewrite A=[A,|A,] with r(A,)=m, and x=[X,|X,]

* The posterior1s p(x | y,4) < p(x, | v,4) Ly, 4. (X))

 Part of the estimand is x;, = A4, /(y—A4,x,)

Solutions x, lie in the intersection of a linear space of
dim. n-m with the positive orthant: a convex polytope

18



New 1dea: Polytope samplers

Strategy
1. Leverage HNF to find first vertex

2. Greedily move along the edges to find all
vertices (via HNF pivoting)

3. Place a distribution on the polytope; we develop
three strategies to do this using Dirichlet pdf

Polytope samplers provide a new exact sampling
strategy for inference in ill-posed inverse problems

19



Hermite normal form

* Hermite Normal Form of integer matrix A: B=AQ

* Columns of Q, generates null-space

Q, Q,
Al |-AT A,
B,
0 I
m A 1 A2 = I 0




Finding the first vertex (almost)

Start from y = Ax, with A of size mxn
Define x* = Q'x

Then rewrite y = AQQ'x = AQx’
Notice that AQ=1[I_ |0 ]

So x’ =[y | 0] 1s a solution!

Caveats apply, but it turns out this 1s a good start

21



Distributions on a convex polytope

1. Lift the polytope 1nto a higher dimensional
simplex, posit a Dirichlet, project back

2. Triangulate the convex polytope into simplices,
posit a collection of Dirichlet distributions

weighted by their volumes

3. Duirect generalization of Dirichlet that leverages
moment map and projective geometry

22



[llustrative example

Matrix A 1s 9x12 and leads to a 3D solution space

data[, 6:8][,3]
2

data[, 6:8][,1]

datal, 6:8],2]
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Take home points

» Massive data on individual passengers available

* Lots of opportunities for impact
— Assessing/predicting overcrowding, monitoring/routing
— Planning minimally-disrupting closures for safety

— Validating standard assumptions (congestion models, ...)

 Ill-posed mnverse problem

— Samplers based on geometry of polytopes, and much
more (e.g., Fienberg-Fréchet sharp bounds on OD flows)

25



Thanks




